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Resu l t s  a r e  given of calculat ions of the quant i t ies  cha rac t e r i z ing  the random pseudoturbulent  
mot ions  of the p h a s e s  in a homogeneous fluidized bed  consis t ing of p a r t i c l e s  of  two sor t s ,  dif-  
fer ing  in size.  The dependence of the coeff ic ients  of pseudoturbulent  diffusion of the pa r t i c l e s ,  
the m e a n - s q u a r e  ve loc i t ies  of the pulsa t ions ,  etc. ,  on the pa r t i a l  concentra t ions  of the p a r t i -  
c les ,  the ra t io  of the i r  s izes ,  and o ther  p a r a m e t e r s  is evaluated. Fo r  g r anu la r  beds ,  fluidized 
by a gas  o r  a d rop- type  liquid, intense chaotic f luctuations of both phases  a r e  cha rac t e r i s t i c ;  
these  de te rmine  to a cons iderab le  degree  the obse rved  m a c r o s c o p i c  p r o p e r t i e s  of the bed and 
affect  i ts  e f fec t iveness  as  a working body in var ious  types  of heat  exchangers  and chemica l  r e -  
ac to r s .  Such random ("pseudoturbulent")  mot ions  a r e  pa r t i cu l a r l y  cons iderable  for  beds  of 
sma l l  p a r t i c l e s  under  homogeneous fluidization conditions, where  mixing due to the r i s e  of 
cav i t ies  in the bed, filled only with the fluidizing medium,  is p rac t i ca l ly  absent.  A s i m i l a r  s i t -  
uation is  encountered  in r e a c t o r  and regenera t ing  units for  cata lyt ic  c racking  [1, 2], in beds  
with a d rop- type  liquid phase ,  in r a r e f i e d  two-phase  s y s t e m s  under  the conditions of s t rong  
fluidization o r  of the t r a n s p o r t  of bulk m a t e r i a l s  in a dilute phase ,  etc. The c h a r a c t e r i s t i c s  
of pseudoturbulence  in local ly homogeneous  flows of monod i spe r se  two-phase  s y s t e m s  have 
been  invest igated,  for  example ,  in [3-5]. However,  r ea l  f luidized beds  a r e  genera l ly  po lydis -  
p e r s e ;  the p r e s e n c e  of p a r t i c l e s  of different  s i zes  in the bed has a very  cons iderable  effect  on 
the intensi ty of the pulsat ions ,  the effect ive  diffusion coeff icients  of the phases  of the bed, the 
effect ive  v i scos i t i e s ,  etc. [1, 6]. In addition, the chaotic mixing in po lyd i spe r se  beds  de t e rmines  
some of the technological  c h a r a c t e r i s t i c s ,  specif ical ly ,  the ra te  of en t ra inment  of smal l  p a r t i -  
c les  by the flow of the fluidizing med ium and the sett l ing of l a rge  pa r t i c l e s ,  the degree  of sep -  
a ra t ion  of the f rac t ions  of the d i spe r se  phase ,  which is  ve ry  impor tan t  in de te rmina t ion  of the 
l imi t s  of the exis tence  of the f luidized state,  and in the modeling of numerous  p r o c e s s e s  of the 
separa t ion  of p a r t i c l e s  with r e spec t  to s ize  o r  density [1, 6]. 

w We cons ider  a homogeneous fluidized bed  of p a r t i c l e s  of radius  aj and density d 3 (the subsc r ip t  j 
denotes the sor t  of  pa r t i c l e s ) ,  a s suming  the Reynolds number s ,  cons t ruc ted  with r e s p e c t  to aj andthe re la t ive  
veloci ty  of the liquid phase  u, to be  smal l .  The l a t t e r  p e r m i t s  a s suming  the interact ion between the pa r t i c l e s  
and the flow to be  l i nea r  with r e spec t  to u, and using, for  the force  of the interact ion fj between a pa r t i c l e  
and the cons t ra ined  flow in a b i d i s p e r s e  cloud of pa r t i c l e s ,  the r e su l t s  of [7], in accordance  with which we can 
wr i t e  

1i = 6~b tasFi ,  F t  = e K ( ~ ,  •  F ~ =  e K ( a  -~, •  9) ,  e = i - - 9 ,  

K (a, • 9) = t + 3 (5• + 3r + 2cr p , 27 (• + a)"-9 ~- 
2 ( 2 - - 3 9 ) ( 1 + •  ) : -  2 ( l  -v- • (2 - -  3p):~- -}- 

"-~ 2 ----"~l 3p [ t + (2--3(• + a)p3p)(l +• ] [81 (:r '-}- c~)'P~" + 9 (• + r (2-- 30) P] t / z L - T ~ I  q- • t _ • . (1.1) 

Here  the following p a r a m e t e r s  a r e  introduced: 

z = Pxl9~, a = a l /a z ,  P = Pl + 9 ~ ,  (1.2) 
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w h e r e  pj a r e  the p a r t i a l  vo lume t r i c  concent ra t ions  of p a r t i c l e s  of the j - t h  type;  ~ is  the po ros i t y  of the bed; 
and  # is  the v i s c o s i t y  of  the liquid phase .  The force  of t he  in teract ion,  r e f e r r e d  to the p a r t i c l e s  in unit vo l -  
ume  of the mix tu re ,  is obta ined by mult ip lying fj f r o m  (1.1) by the countable concentra t ions  nj = ~flpj  (crj is  
the vo lume of p a r t i c l e s  of the j - t h  type) .  

The s m a l l n e s s  of the Reynolds  n u m b e r  m a k e s  it  po s s ib l e  to a s s u m e  that  the sy s t em is "co l l i s ion less , "  
in the s ense  that  the in te rac t ion  be tween the p a r t i c l e s  t akes  p lace  main ly  through random pe r tu rba t ions  in the 
f ie lds  of  the ve loc i ty  and p r e s s u r e  of the liquid phase ,  while  the role  of ind i rec t  col l is ions  in p r o c e s s e s  of 
m o m e n t u m  and ene rgy  t r a n s f e r  be tween p a r t i c l e s  is  not grea t .  It i s  then p e r m i s s i b l e  to use  the s ame  model  
and the s a m e  s tochas t i c  equat ions for  random pseudoturbulent  quanti t ies  as  in [3-5]. 

Neglect  of d i r ec t  col l i s ions  is  a l so  comple te ly  jus t i f ied  for  p a r t i c l e s  of m o d e r a t e  s ize,  r ight  up to va lues  
of the Reynolds  n u m b e r  on the o r d e r  of  100. However ,  with such Reynolds number s  r ea l  f luidized beds  a r e  
inhomogeneous.  T h e r e f o r e ,  the r e s u l t s  obta ined will  c h a r a c t e r i z e  only pulsa t ions  in the so -ca l l ed  "dense"  
p h a s e  of the f luidized bed  (outside of cavi t ies ,  p r ac t i c a l l y  f r ee  of pa r t i c l e s ) .  With a fu r the r  i nc r ea se  in the 
Reynolds number ,  the  ro le  of  d i rec t  col l i s ions  in m o m e n t u m  and energy  t r a n s f e r  is  r e in fo rced  and, finally, 
b e c o m e s  dominating,  and the model  in [3-5] c e a s e s  to be  valid.  An a t tempt  to take account  of col l is ions by 
introducing an in tegra l  t e r m  of the s ame  fo rm as  that  f iguring in the Bo l t zmann  equation fo r  a dense gas  into 
the kinet ic  equation was  made  in [8], where  no account  was  taken of s e v e r a l  impor tan t  fac tors ,  cha rac t e r i z ing  
the in te rac t ion  be tween the p a r t i c l e s  and the liquid phase ,  and which a r e  pa r t i cu l a r l y  significant p r e c i s e l y  for  
l a rge  p a r t i c l e s  ( for  example ,  the Magnus force) .  It is  obvious that  a m o r e  p e r f e c t  kinet ic  theory  for  a coa r se ly  
d i s p e r s e d  f luidized bed  can be  cons t ruc ted  on the b a s i s  of m o r e  mode rn  concepts ,  and of the model ,  set  forth in 
[9, 10]. 

In what follows, the concent ra t ions  Pl and p~ a r e  a s s u m e d  to be  local  c h a r a c t e r i s t i c s  of the bed, given 
a p r i o r i ,  and the quest ion of t he i r  actual  de te rmina t ion  in different  reg ions  of the bed  is not considered.  To 
solve the p r o b l e m  posed ,  an inves t igat ion m u s t  be  made  of the m a c r o s c o p i c  dis tr ibut ion of p a r t i c l e s  of both 
types  ove r  the height of the bed, under  conditions o f  dynamic  equi l ibr ium,  in the s a m e  way as  an invest igat ion 
was  made  in [5] of  the dis t r ibut ion of the m a t e r i a l  in a m o n o d i s p e r s e  f luidized bed. 

The  c h a r a c t e r i s t i c s  of pseudoturbulence  a r e  ca lcula ted  below in the f i r s t  (" Euler")  approximat ion ,  
whe re  pj and the o the r  dynamic p a r a m e t e r s  desc r ib ing  the m a c r o s c o p i c  s ta te  of the sy s t em a r e  r ega rd ed  ap-  
p r o x i m a t e l y  as  quant i t ies  which do not depend on the coordina tes  o r  the t ime ,  and which coincide with the 
local  va lues  in the region of the bed under  invest igat ion.  A coordinate  s y s t e m  is used  in which the p a r t i c l e s  
in the above region,  on the ave rage ,  a r e  at r e s t ,  and the x 1 axis  is d i rec ted  along the mean  veloci ty  of the 
c a r r i e r  flow u. It is  c l e a r  that  the p r o b l e m  is s y m m e t r i c a l  with r e spec t  to this  axis.  

Stochast ic  equations fo r  the random pulsa t ions  of the veloci ty  of the p a r t i c l e s  in the liquid phase  and the 
pulsa t ion  of the p r e s s u r e s  a r e  obtained f rom the equations of mot ion in the s a m e  way as in [3-5]. R e p r e s e n t -  
ing a l l  the random quanti t ies  in the fo rm of F o u r i e r - S t i e l t j e s  in tegra l s  with the spec t r a l  m e a s u r e s  ~ Z ~ ,  
f r o m  the s tochas t ic  equations we can obtain a s y s t e m  of l inea r  a lgeb ra i c  equations for  the spec t r a l  m e a s u r e s ,  
which have the fo rm 

im3codZ~ ) ----- 6 ~ a j  [F~ (dZv --  dZ~. )) + FhudZ (') -}- Fj,udZ(p2)]; (1.3) 

i (o + ku) (dZ g') + dZg 2)) - -  iekdZ. = 0; 

idoe (co + ku) dZv = - -  ikdZp --  6:~talpl/a 1 IF1 (dZv --  dZ(w l)) + 

+ FnudZ(,, + FlouclZ o--(2)]J + 6~ta2p.,/ao. [F 2 (dZv - -  dZ~ )) + F~ludZ(p ') + F22udZg2)], Fv5 = dF~ 
dps'  

where  mj = djaj i s  the m a s s  of a pa r t i c l e  of  the j - t h  sor t ;  the coeff icients  Fj and E a re  defined in (1.1); and 
~0 and k a r e  the f requency and the wave  v e c t o r  of the pulsa t ions ,  respec t ive ly .  

The sy s t em of equations (1.3) will be  c losed if the s ta t i s t ica l  c h a r a c t e r i s t i c s  of the spec t r a l  m e a s u r e s  

(9 dZ p of the pa r t i a l  vo lume t r i c  concent ra t ions  a r e  known. Fo r  the spec t r a l  densi t ies  of the fluctuations of 
these  concent ra t ions  we use  exp re s s ions  following f rom the theory  in [11], 

�9 2~p ( z ,  k) = kD(J~k % r  (k(~ --  k) 
r + (kDO)k - -  Tjo~2) 2" 

3pp (l--p/p,) tr D U) 
r = ~ , k (~)  - - - - ( 4 . 5 ~ p ) ' 1 3 / a ~ ,  Tj = <wO)'2----->" 

Here  D (i) 

(i..4) 

is the tensor of the effective pseudoturbulent diffusion of particles of the j-th type, diagonal 
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in the selected system of coordinates; the coefficients of the transverse diffusion in both directions are equal. 

To close (1.3), (1.4), analogously to [4, 5] we use a representation of the tensors D (j) and the quantities 

(w(J)'2) in terms of the spectral density ~ (j) of the pulsation velocities of the particles: 
~ W , W  

D ?  ) = ,~/2 ~[ _~<~) (0,  k) dk,  <,,.cJ>'-b = .t'S tr _~,~<~) (~, k) d~dk.  (1 .5 )  

Equat ions  (1.3),  t o g e t h e r  wi th  (1.4),  (1.5),  p e r m i t  e x p r e s s i n g  atl  the s p e c t r a l  dens i t i e s  which  a r e  of  in-  
t e r e s t  in d o s e d  fo rm.  

w E x p r e s s i n g  dZ(w j) in t e r m s  of dZ(p j) us ing  (1.3),  c a l c a l a t i n g  f r o m  th is  the t e n s o r  s p e c t r a l  dens i ty  
~(j) 
w,w (w, k) taking account of relationships (1.4), assuming the frequency co equal to zero, and integrating in 

the first relationship of (1.5), after calculations we obtain the following equations for the coefficients of longi- 

tudinal "'D(: ) and transverse ~(j) D(3 D'" pseudoturbulent diffusion of the particles: i.)2 --  

D~J)D~ ~) - .  zau-r:" ~ [J?)/C" + 2Y~)Lq/~ -~ r2 r<~)l - ; Z Q ! d 0  j ~ - -  

r2 r(2)] - -  9_..2,.(2). 2,h [y~2)/e2 ~_ 2]t2)L~.,/e + ~j2~o ], T . . . . .  r ' ~ 2  . . . .  (2.1) 

= ~ - J~ ) + k(- )v~r  - J ? ) ) ] .  D~j): au2/e2 [k(l>?~r ,q) o 2 (d.02) 
1 

"~ = D ~ ) / ( D ?  > - -  D~>), 4 ~, = t" t'/(t-" + ~) ~t, L~, - ~ ~" ~' 

These equations are similar in form to the equations in [4, 5]. Eliminating the quantities Dtl j) and Dr2 j) 

from (2.1), we obtain a system of two transcendental equations for determining the parameters 7j: 

2 r ( 1 )  / o LT.W~-/8 2 § 27"~](42)Lj~/s -~- ?l~o % ~  ~----~. _ 

-}- .~j_o (9)Lf2J.)] Y1 (19 ' § (y~l). - -  Yl *)) ~-- , ,, , z - -  Y!i2)); ] = t,2. (2.2) 

It can  b e  shown that ,  f o r  any given se t  of  v a l u e s  of  the  p a r a m e t e r s  o~, a ,  and p having  p h y s i c a l  mean ing ,  

the  s y s t e m  (2.2) has  a s ing le  se t  of  p o s i t i v e  roo t s ;  D~ J)- and --D(~ J) a r e  e x p r e s s e d  f r o m  (2.1) in the  f o r m  

Dd) (: * D!/)* v(J)~d)* i = e a 2 u D i  s) , z ~ : v ~ ) u i  , 

z ( l  _L •  ( l  _ _  p )  4 . ~ / , , .  j ~  , - -  . , .  i + ~,,: 

F r o m  th i s  it  can be  s een  tha t  the  coe f f i c i en t  of t r a n s v e r s e  p seudo tu rbu len t  d i f fus ion is  iden t i ca l  f o r  
p a r t i c l e s  of  both  f r a c t i o n s ,  whi le  the  coe f f i c i en t s  of  longitudinal" diffusion d i f f e r  cons ide rab ly .  Howeve r ,  D~ = 

D (j)* f r o m  (2.3) depends  on the r o o t s  Tj of s y s t e m  (2.2) and, consequen t ly ,  a l so  on the f r a c t i o n a l  compos i t ion  
of  the f lu id ized  bed.  
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The solution of Eqs. (2.2) and the calculation of the quantities in (2.3) were carried out numerically on 
a BESM-4 digital computer. The dependences of the dimensionless coefficients from (2.3) on p have the same 
character as in a monodisperse bed [4, 5]. When p approaches zero or the concentration of the system, in a 
state of dense packing, p . ,  these coefficients revert to zero; they all have maxima with p = 0.2...  0.3. The 
longitudinal diffusion is found to be considerably more intense than the transverse, which is also in agreement 
with the conclusions for a monodisperse bed in [4, 5]. 

However, the numerical values of the quantities N(~ and ]3(! ) * depend to a considerable degree on the 
fractional composition of the bed, i.e., on the parametersD~ and ~ from (1.2). Characteristic dependences of 
N(~ and N~ ) on p with ~ = 0.5 (dashed curves) and~4 = 2 (solid curves) are shown in Fig. 1. The anisotropy of 
the pseudoturbulent diffusion is minimal with values of p corresponding to the maxima of the curves in Fig. i ,  
and depending very weakly on ~ and ]a. The absolute values of the coefficients N(] ) for large (small) particles 

D 
increases (decreases) considerably with an increase in their relative concentration, the more appreciably the 
g rea t e r  the difference in the s izes  of the par t ic les .  

Dependences of the dimensionless  coefficient of t r a n s v e r s e  diffusion D~ on the relat ive volumetr ic  con- 
centrat ion ~ with ~ = 0.8 (dashed curves) and ~ = 3 (solid curves) a re  shown in Fig. 2a; Fig. 2b gives depen- 
dences of D~ on the p a r a m e t e r  ~ with Z = 0.5, 2 (dashed and solid curves ,  respectively).  F rom Fig. 2 it can 
be seen that the dilution of a monodisperse  sys tem with l a rge r  par t i c les  considerably (by more  than two times) 
intensifies the t r a n s v e r s e  turbulent mixing. On the contrary ,  the addition of relat ively smal l  par t ic les  to the 
sys tem leads to a cer tain weakening of the diffusion in a t r ansve r se  direction; under these c i rcumstances ,  
D~ is a monotonical ly increas ing  function of the rat io of the radius to the large par t ic les  to the radius of the 
small  par t ic les .  

Analogous dependences were  plotted also for  the dimensionless  coefficients of pseudoturbulent diffusion 
of pa r t i c l e s  of both f rac t ions  in a longitudinal direction. The cha rac te r  of these dependences is c lea r  f rom 

the representa t ion  of D{1 j)* in the form of the product  of D~ by the coefficient N{D j ) - I  and the curves  in Figs. 
1 and 2. As an example, in Fig. 3a the value of D~2)*is shown as a function o f u  with ~ = 0.8, 3 (dashed and 
solid curves ,  respect ively) ,  and Fig. 3b gives the dependences of this same quantity on ~ with ~ = 0.5 (dashed 
curves) and u = 2 (solid curves).  It can be seen that the polydisperse  cha rac t e r  of the bed has a ser ious  ef-  
fect  on the ra tes  of longitudinal diffusion; the overa l l  cha rac t e r  of the dependences in Fig. 3 is the same as 
that of the curves  in Fig. 2. Specifically, the coefficient of longitudinal diffusion of large (small) par t ic les  is 
a monotonical ly increas ing  (decreasing) function of ~(~ > 1 ); the rate of its change with (~ is g rea te r  the 
higher  (lower) the relat ive concentrat ion of the par t i c les  in the binary bed under consideration. 

All these conclusions relate,  of course ,  to sys tems  charac te r i zed  by an identical value of p, and differ-  
ing only in the i r  values of ~ and ~ .  

w Equations (1.3)- (1.5) make i tposs ib le  to find the spectral  m e a s u r e s  and the densities of all the ran-  
dom p r o c e s s e s  under investigation and to express  the different corre la t ion  functions in the form of definite 
integrals  with respec t  to the frequency of the pulsat ions w and the wave space k, using standard methods. 
Calculations a re  made below of some of the most  important  cha rac t e r i s t i c s  of pseudoturbulence,  giving a suf- 
ficiently t rue  representa t ion of the p roper t i e s  of the pseudoturbulence and of the effect of the fractional  com- 
position of the bed on them. For  simplici ty,  we l imit  ourse lves  to an analysis  of g ranular  beds fluidized by a 
gas,  assuming d 1 and d 2 are  equal and using the rat io 0 = d0/d 1 << 1 as a smal l  pa ramete r .  Just  such beds are  
typical  for  catalyt ic  cracking units [2]. 

F rom (1.3), (1.4), using a s tandard method, we obtain formal  representa t ions  for  the mean squares  of 
the components of the velocity of the par t ic les  in longitudinal and t r a n s v e r s e  directions,  depending on the 
mean squares  of the modulus of the velocity and the coefficients of the pseudoturbulent  diffusion of the p a t t i -  
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eles as parameters. Omitting the details of the calculation, we write these representations for the particles 

of the first fraction: 

<(w~,).)2>. <(w~I)')2} __ 27092 (1 -- 9/9.) 
= u2 (4.5a)2/aBe(i.+.x)p2/aD(21). X 

i ~,2j(2) . .2r2r2 2• 2 (l) 2 - -  2 r  r(1) ,2 4 ~2v0~12 
x • /8 + - - +  ~ + - - "  ? ~7" X~i /a l ld0  5~282 8 

i , ~2r( t )  27~Ll~J~] , 2430~0 ~ (1 -- 9/9.) s~" 

+ o'8 J ~ - ( 4 ~ ) 2 / a R e ~ ( l + ~ . ) ~ , o  2/a ~ - ( ( w ( " ) 2 > * ( 1  - - N ~ ) )  ~- 

• d(02) , 2u(i+2"V(~))FtFnJ(21) 2(1-2"V(~))FIF1J(2) ] (3.1) 

<(4"')2> < ( 4 " ) 5  _ ~3 ,~0~o(~-  p/p,) < 
<(W(21)')2)* - -  ua ~ (4.5.~) 2/3 Re ( i  + x) p2/as X 

�9 - ~,4 - ~ / ' - -A- 2 ~ 90F, (t + 2N~))  ~= +- ]+4 

dF v a In F i 
Fv5 = dp-T, Li6 _ ('06 ' 

w h e r e  the  Reyno lds  n u m b e r  Re  is  in t roduced ,  def ined in the fol lowing m a n n e r :  Re = 2ud0a2(1-p) /#  = 2ud0a i �9 
(1 - p)/c~. 

Summing  e x p r e s s i o n  (3.1) in a c c o r d a n c e  with the second  re la t ionsh ip  of  (1.5), we  obtain  the equat ion 

B~ c~ (3 .2 )  <(wO)')~> = A1 + <(w(1),)~ > + ~(u,(2)--,)2 >, 

r ' , , , ,2ro)  V~d(22) Az 6 (9at)t/3004/3 (1 - -  P/P.) F, | - ,  1~2 2.,2L r(2) ,- r2 1~2 , ,2 ~ 2 2 2 (1) 
27 xT iL I1]  0 -+. 72L22](02)/vr u 2, a r e ( !  +x)21/aD~ 1)* ~ T  + 27~• +" a2e T ~z2r 

.J 

B, : 54 (4,Sa)'/a• ~/a (t -- p/p.) e' (I + 2N~ )) [F~j(j)/e~ + 2F~Fnj~o/e + F~&J(o~) ] u' ,  
alRe=~' (i + •  - - A ~  )) 

Cx : 54 (4.Sa)l/aO~p~/a (i -- 9/0.) e = (1 + 2N(~ )) [F~J(22)/e~ -}- 2F~F~2J(22)/e -r-' ~,2,. 12a0/'(2)]J U4" 
g Re = (i q- • at (i -- N(~ )) 

e x p r e s s i o n s  fo r  the  quant i t ies  ((wi~)')2), c h a r a c t e r i z i n g  the p a r t i c l e s  of  the second  f rac t ion ,  have The  
the  s a m e  f o r m  as  in i3.1).  They  can be  wr i t t en  by analogy to (3.1), taking into c o n s i d e r a t i o n  tha t  x ,  (~, and 
Re  m u s t  be  r e p l a c e d  by  x - t ,  ~-1, and a r e ,  r e spec t ive ly .  Summat ion  of  t he se  quant i t ies  l eads  to an equation 
fo r  ((we)') 2 }, ana logous  to (3.2). Solution of  these  two equat ions  m a k e s  it pos s ib l e  to find the m e a n  s q u a r e s  
of  the modu lus  of  the ve loc i ty  f o r  p a r t i c l e s  o f  bo th  f r a c t i o n s  as  funct ions  of  the phys ica l  and ope ra t ing  p a -  
r a m e t e r s  of  the  bed  and, f inal ly,  to  d o s e  the r e l a t i onsh ip s  (1.3)-(1.5).  

Actual  ca lcu la t ions  w e r e  m a d e  with d i f fe ren t  va lues  o f t h e p a r a m e t e r s  Re and 0 = do /d , ,  c o r r e s p o n d i n g  
to f lu id ized beds  e n c o u n t e r e d  in r e a c t o r  and r e g e n e r a t o r  ca ta ly t i c  c r a c k i n g  units.  As an example ,  Figs.  4 and 
5 g ive  data  on the longi tudinal  pu l sa t ion  o f  the ve loc i ty ,  obta ined  wi th  Re = 0.5 and 0 = d 0 / d  ~ = 0.00125. F ig -  
u r e  4 i l l u s t r a t e s  the dependences  of  the  d i m e n s i o n l e s s  quant i ty  ((w(lP) 2 }* on % with p =0.1 o r  0.3 ( n u m b e r s  
on curves)  and o~ = 0.8 (dashed  curves)  o r  a = 3 ( so l id  cu rves ) .  F igu re  5 g ives  dependences  of  the  s a m e  
quant i ty  on o~ with ~ = 0.5, 2 (dashed  and so l id  cu rve s ,  r e spec t ive ly ) .  As can be  seen f r o m  Fig. 4 ,  the p u l s a -  
t ions  of  sma l l  ( large)  p a r t i c l e s  a r e  r e i n f o r c e d  (weakened) wi th  an i n c r e a s e  in t h e i r  r e l a t ive  concen t ra t ion ,  the 
m o r e  a p p r e c i a b l y  the  h ighe r  the  tota l  v o l u m e t r i c  concen t r a t i on  of  the  d i s p e r s e  phase .  
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Analogously,  we can obtain express ions  also for  the o the r  cha rac t e r i s t i c s  of pseudoturbulent  motion; 
in the genera l  case ,  these  have a v e r y  cumber some  form. The represen ta t ions  for  the mean squares  of the 
longitudinal and t r a n s v e r s e  ve loc i t ies  of the gas have the s imples t  form 

Fu {3 ~ 2~ (i)~ ] (re2)_._ p 2(I-9/0,)  ~, - DJ w(t)'2 
' l sO+x)~ ,  | l.a-z,v(~) <( )>-4:(3+2N~))<(w(2)')'>/(l+2N~))+3(l+• 

L ~ D 

v 2 / =  tsO+• L l + _.~ ~'~) ((w(l)'):> + t • ...~ v(2---'-~ <(w(-~)') "0> + (t + z) u~J " 

and for  the additional pulsat ion flow of the gas 

�9 xp~  (1  - -  p / p , )  �9 , p~- ( t  - -  p / p , )  u ( 3 . 4 )  

The c h a r a c t e r  of the dependence of  these  quanti t ies on the p a r a m e t e r s  of the bed can be brought  out on 
the bas i s  of  re la t ionships  (3.3), (3.4), and the curves  in Fig. 1. 

As follows f rom the above analysis ,  the re la t ionships  between the pa r t i c l e  s izes  of both f ract ions  and 
the i r  contents in the d i spe r se  phase  has a v e r y  considerable  effect  on the intensi ty and the p rope r t i e s  of the 
pseudoturbulent  pulsa t ions;  the c h a r a c t e r  of  this  effect  depends on the values  of the o the r  p a r a m e t e r s  of the 
bed. A change in the level  of the development  of the pseudoturbulence leads to corresponding changes in the 
c h a r a c t e r  and the intensi ty  of the mixing of the phases  in a fiuidized bed and, in the final analysis ,  has an ef-  
fect  on the e f fec t iveness  of the use of the bed in the Organization of heat-  and m a s s - t r a n s f e r  p r o c e s s e s  in in-  
dust r ia l  chemical  r e a c t o r s  and o ther  appara tuses ;  this  mus t  be taken into considerat ion in calculation and 
design of this  equipment.  In this  r e spec t ,  the conclusion of the exis tence  of a weakening of the pulsat ions and 
a lowering of the e f fec t iveness  of  the mixing with the addition of a small  (by volume) amount of small  pa r t i -  
c les  to the or iginal  monod i spe r se  bed is of grea t  importance.  The conclusion has been conf i rmed exper i -  
menta l ly  by known exper iments  on the dependence of the v iscos i ty  of fluidized sys tems  on the composit ion of 
the i r  d i spe r se  phase  (see ,  fo r  example,  [1, 7, 12]), in accordance  with which compara t ive ly  small  additions of 
fines cons iderably  lower  the viscosi ty .  The other  p r o p e r t i e s  of the model ,  p r e sen t ed  above, re la ted  to the de- 
pendences  of the m e a n - s q u a r e  ve loc i t ies  of the pulsat ions and the coeff ic ients  of the pseudoturbulent  diffusion 
of the pa r t i c l e s  on ~ and a,  a re ,  on the whole, conf i rmed by cer ta in  observat ions  with beds used in catalyt ic  
cracking p r o c e s s e s .  However,  the p r e sen t  s ta te  of exper imenta l  investigations of b inary and o ther  polydis-  
p e r s e  f luidized beds  does not p e r m i t  any kind of detai led compar ison  between theore t ica l  conclusions and ex-  
pe r imen ta l  data. 

The l a t t e r  is  r ende red  difficult  to a cons iderable  degree  also as  a resu l t  of the complexi ty and cumber -  
someness  of  the theory  i tself ,  which is  ex t r eme ly  unsuitable for  use for  p rac t i ca l  purposes .  There fo re ,  t he re  
is a need fo r  the crea t ion  of a s implif ied theore t ica l  model  and engineer ing var ian ts  of the analysis  of b inary  
beds.  In view of this ,  calculated data of the type given above a re  found useful both for  c lar i fying the mos t  s ig-  
nificant fac tors ,  determining the behav io r  of a po lyd i spe r se  bed under these  o r  o ther  conditions, and in ve r i fy -  
ing the conclusions following f rom such simplif ied schemes.  
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