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Results are given of calculations of the quantities characterizing the random pseudoturbulent
motions of the phases in a homogeneous fluidized bed consisting of particles of two sorts, dif-
fering in size. The dependence of the coefficients of pseudoturbulent diffusion of the particles,
the mean-square velocities of the pulsations, etc., on the partial concentrations of the parti-
cles, the ratio of their sizes, and other parameters is evaluated. For granular beds, fluidized
by a gas or a drop-type liquid, intense chaotic fluctuations of both phases are characteristic;
these determine to a considerable degree the observed macroscopic properties of the bed and
affect its effectiveness as a working body in various types of heat exchangers and chemical re-
actors. Such random ("pseudoturbulent') motions are particularly considerable for beds of
small particles under homogeneous fluidization conditions, where mixing due to the rise of
cavities in the bed, filled only with the fluidizing medium, is practically absent. A similar sit-
uation is encountered in reactor and regenerating units for catalytic eracking [1, 21, in beds
with a drop-type liquid phase, in rarefied two-phase systems under the conditions of strong
fluidization or of the transport of bulk materials in a dilute phase, etc. The characteristics

of pseudoturbulence in locally homogeneous flows of monodisperse two-phase systems have
been investigated, for example, in [3-5]. However, real fluidized beds are generally polydis-
perse; the presence of particles of different sizes in the bed has a very considerable effect on
the intensity of the pulsations, the effective diffusion coefficients of the phases of the bed, the
effective viscosities, etc. [1, 6]. In addition, the chaotic mixing in polydisperse beds determines
some of the technological characteristics, specifically, the rate of entrainment of small parti-
cles by the flow of the fluidizing medium and the settling of large particles, the degree of sep~
aration of the fractions of the disperse phase, which is very important in determination of the
limits of the existence of the fluidized state, and in the modeling of numerous processes of the
separation of particles with respect to size or density [1, 6].

§1. We consider a homogeneous fluidized bed of particles of radius aj and density dj {the subscript j
denotes the sort of particles), assuming the Reynolds numbers, constructed with respect to aj and the relative
velocity of the liquid phase U, to be small. The latter permits assuming the interaction between the particles
and the flow to be linear with respect fo u, and using, for the force of the interaction £ between a particle
and the constrained flow in a bidisperse cloud of particles, the results of [7], in accordance with which we can
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Here the following parameters are introduced:

% = pi/0s O = 8y/85, P = Py + P2

(1.1)

(1.2)
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where pj are the partial volumetric concentrations of particles of the j-th type; € is the porosity of the bed;
and p is the viscosity of the liquid phase. The force of the interaction, referred to the particles in unit vol-
ume of the mixture, is obtained by multiplying fj from (1.1) by the countable concentrations n; = crj'lpj (aj is
the volume of particles of the j-th type).

The smallness of the Reynolds number makes it possible to assume that the system is " collisionless,"
in the sense that the interaction between the particles takes place mainly through random perturbations in the
fields of the velocity and pressure of the liquid phase, while the role of indirect collisions in processes of
momentum and energy transfer between particles is not great. It is then permissible to use the same model
and the same stochastic equations for random pseudoturbulent quantities as in [3-5].

Neglect of direct collisions is also completely justified for particles of moderate size, right up to values
of the Reynolds number on the order of 100. However, with such Reynolds numbers real fluidized beds are
inhomogeneous. Therefore, the results obtained will characterize only pulsations in the so-called "dense'
phase of the fluidized bed (outside of cavities, practically free of particles). With a further increase in the
Reynolds number, the role of direct collisions in momentum and energy transfer is reinforced and, finally,
becomes dominating, and the model in [3-5] ceases to be valid. An attempt to take account of collisions by
introducing an integral term of the same form as that figuring in the Boltzmann equation for a dense gas into
the kinetic equation was made in [8], where no account was taken of several important factors, characterizing
the interaction between the particles and the liquid phase, and which are particularly significant precisely for
large particles (for example, the Magnus force). It is obvious that a more perfect kinetic theory for a coarsely
dispersed fluidized bed can be constructed on the basis of more modern concepts, and of the model, set forth in
[9, 10].

In what follows, the concentrations p; and p, are assumed to be local characteristics of the bed, given
a priori, and the question of their actual determination in different regions of the bed is not considered. To
solve the problem posed, an investigation must be made of the macroscopic distribution of particles of both
types over the height of the bed, under conditions of dynamic equilibrium, in the same way as an investigation
was made in [5] of the distribution of the material in a monodisperse fluidized bed.

The characteristics of pseudoturbulence are calculated below in the first (" Euler'') approximation,
where Pj and the other dynamic parameters describing the macroscopic state of the system are regarded ap-
proximately as quantities which do not depend on the coordinates or the time, and which coincide with the
Iocal values in the region of the bed under investigation. A coordinate system is used in which the particles
in the above region, on the average, are at rest, and the x; axis is directed along the mean velocity of the
carrier flow U. It is clear that the problem is symmetrical with respect to this axis.

Stochastic equations for the random pulsations of the velocity of the particles in the liquid phase and the
pulsation of the pressures are obtained from the equations of motion in the same way as in [3-5]. Represent-
ing all the random quantities in the form of Fourier—Stieltjes integrals with the spectral measures 0Z,
from the stochastic equations we can obtain a system of linear algebraic equations for the spectral measures,
which have the form ' .

im;0dZy) = 6npa; [F;(dZ, — dZ) 4 F;ndZ{’ + F;udZ$P); , (1.3)
i (0 4+ ku) (dZ8 + d2§°) — iekdZ, = 0; ‘
idye (0 + ku) dZ, = — ikdZ, — 6npa,p, /0, [F1(dZ, — dZP) +
dF.
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where m; = dio; is the mass of a particle of the j-th sort; the coefficients FJ- and € are defined in (1.1); and
w and k are the frequency and the wave vector of the pulsations, respectively.

The system of equations (1.3) will be closed if the statistical characteristics of the spectral measures

dZ(J) of the partial volumetric concentrations are known. For the spectral densities of the fluctuations of
these concentrations we use expressions following from the theory in [11],
pOx  O,¥ (k9 —k)
T @ (kp@Pk — T;02)%
@, = 3p ;0 (1—p/ps)

L U s L W7 W 13)g. T = 1D9 (L.4)
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Here D(i) is the tensor of the effective pseudoturbulent diffusion of particles of the j-th type, diagonal

YO, (0, k) =X
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in the selected system of coordinates; the coefficients of the transverse diffusion in both directions are equal.

To close (1.3), (1.4), analogously to [4, 5] we use a representation of the tensors pY ) and the quantities

gre. . . (3)
) in terms of the spectral density Y w

(W

of the pulsation velocities of the particles:
DY =2 [ WD, (0,k)dk, (wirdy = [ [t W, (0, k) dodk. (1.5)

Equations (1.3), together with (1.4), (1.5), permit expressing all the spectral densities which are of in-
terest in closed form.
§2. Expressing dZ(J) in terms of dZ(J) using (1.3), calculating from this the tensor spectral density

()

Yy w(a, , k) taking account of relationships (1.4), assuming the frequency w equal to zero, and integrating in
the first relationship of (1.5), after calculations we obtain the following equations for the coefficients of longi-
(3) (1)

tudinal D (J) and transverse D2 = Dy pseudoturbulent diffusion of the particles:
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These equations are similar in form to the equations in [4, 5]. Eliminating the quantities D(iJ) and D (J)

from (2.1), we obtain a system of two transcendental equations for determining the parameters s

ViJie® + 2917 Ly /e + 4 [Y%J(f)/ﬁ‘“’ + 2937 PL /e

s
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It can be shown that, for any given set of values of the parameters «, o, and p having physical meaning,
the system (2.2) has a single set of positive roots; D(]) and D (J) are expressed from (2.1) in the form
DY = eagud”, DY" = NP,
G (3 ( 2\273 %222 (1 — p/py) [ (J(l) 7M) 27 2 (237172 ) . (2.3)
DY == =) S Rl SLSE )Ry (I — g NG J
L4 ) (14003 (1 —p)t 72— *)]}’ v 1+ v
From this it can be seen that the coefficient of transverse pseudoturbulent diffusion is identical for
particles of both fractions, while the coefficients of longitudinal diffusion differ considerably. However, D}

(j)*

D2 from (2.3) depends on the roots Yj of system (2.2) and, consequently, also on the fractional composition
of the fluidized bed.
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3 The solution of Egs. (2.2} and the calculation of the quantities in (2.3) were carried out numerically on
a BESM-4 digital computer. The dependences of the dimensionless coefficients from (2.3) on p have the same
character as in a monodisperse bed [4, 5]. When p approaches zero or the concentration of the system, in a
state of dense packing, p,, these coefficients revert to zero; they all have maxima with p = 0.2...0.3. The
longitudinal diffusion is found to be considerably more intense than the transverse, which is also in agreement
with the conclusions for a monodisperse bed in [4, 5].

However, the numerical values of the quantities N(] ) and D(.] )y depend to a considerable degree on the
fractional composition of the bed, i.e., on the parameters ¢ and » from (1.2). Characteristic dependences of
NY and N%’ on p with ®» =0.5 (dashedcurves) and % = 2 (solid curves) are shown in Fig. 1. The anisotropy of
the pseudoturbulent diffusion is minimal with values of p corresponding to the maxima of the curves in Fig. 1,
and depending very weakly on o and w. The absolute values of the coefficients N(J for large (small) parncles

increases (decreases) considerably with an increase in their relative concentratmn, the more appreciably the
greater the difference in the sizes of the particles.

Dependences of the dimensionless coefficient of transverse diffusion D¥ on the relative volumetric con-
centration ® with o = 0.8 (dashed curves) and « = 3 (solid curves) are shown in Fig. 2a; Fig. 2b gives depen-
dences of D’z“ on the parameter o with 1 = 0.5, 2 (dashed and solid curves, respectively). From Fig. 2 it can
be seen that the dilution of a monodisperse system with larger particles considerably (by more than two times)
intensifies the transverse turbulent mixing. On the contrary, the addition of relatively small particles to the
system leads to a certain weakening of the diffusion in a transverse direction; under these circumstances,

D’{ is a monotonically increasing function of the ratio of the radius to the large particles to the radius of the
small particles.

Analogous dependences were plotted also for the dimensionless coefficients of pseudoturbulent diffusion
of particles of both fractions in a longitudinal direction. The character of these dependences is clear from

2 * i -
the representation of D(ij ) in the form of the product of D} by the coefficient N(J )-1 and the curves in Figs.

1 and 2. As an example, in Fig. 3a the value of D§2 is shown as a function of » with ¢ = 0.8, 3 (dashed and
solid curves, respectively), and Fig. 3b gives the dependences of this same quantity on @ with » = 0.5 (dashed
curves) and » = 2 (solid curves). It can be seen that the polydisperse character of the bed has a serious ef-
fect on the rates of longitudinal diffusion; the overall character of the dependences in Fig. 3 is the same as
that of the curves in Fig. 2. Specifically, the coefficient of longitudinal diffusion of large (small) particles is
a monotonically increasing (decreasing) function of a(x > 1); the rate of its change with ¢ is greater the
higher (lower) the relative concentration of the particles in the binary bed under consideration.

All these conclusions relate, of course, to systems characterized by an identical value of p, and differ-
ing only in their values of o and ».

§3. Equations (1.83)-(1,5) make it possible to find the spectral measures and the densities of all the ran-
dom processes under investigation and to express the different correlation functions in the form of definite
integrals with respect to the frequency of the pulsations w and the wave space k, using standard methods.
Calculations are made below of some of the most important characteristics of pseudoturbulence, giving a suf-
ficiently true representation of the properties of the pseudoturbulence and of the effect of the fractional com-
position of the bed on them. For simplicity, we limit ourselves to an analysis of granular beds fluidized by a
gas, assuming d; and d, are equal and using the ratio 6 = dy/d; <1 as a small parameter, Just such beds are
typical for catalytic cracking units [2].

From (1.3), (1.4), using a standard method, we obtain formal representations for the mean squares of
the components of the velocity of the particles in longitudinal and transverse directions, depending on the
mean squares of the modulus of the velocity and the coefficients of the pseudoturbulent diffusion of the parti-

2,121
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cles as parameters. Omitting the details of the calculation, we write these representations for the particles
of the first fraction:

2
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where the Reynolds number Re is introduced, defined in the following manner: Re = 2udy,(1 —p)/u=2udoa1 .
(1= p)/ ap.

Summing expression (3.1) in accordance with the second relationship of (1.5), we obtain the equation

C1
) = A+ o (1, 7+ O (3.2)
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The expressions for the quantities ((Wi‘z")2 ), characterizing the particles of the second fraction, have
the same form as in (3.1). They can be written by analogy to (3.1), taking into consideration that %, «, and
Re must be replaced by %_1, o[‘, and o Re, respectively. Summation of these quantities leads to an equation
for ((w®"?), analogous to (3.2). Solution of these two equations makes it possible to find the mean squares
of the modulus of the velocity for particles of both fractions as functions of the physical and operating pa-
rameters of the bed and, finally, to close the relationships (1.3) -(1.5).

Actual calculations were made with different values of the parameters Re and 4 =d;/d;, corresponding
to fluidized beds encountered in reactor and regenerator catalytic cracking units. As an example, Figs. 4 and
5 give data on the longitudinal pulsation of the velocity, obtained with Re = 0.5 and 6 = d,/d, = 0.00125. Fig-
ure 4 illustrates the dependences of the dimensionless quantity ((w®")2)* onw with p =0.1 or 0.3 (numbers
on curves) and @ = 0.8 (dashed curves) or ¢ =3 (solid curves). Figure 5 gives dependences of the same
quantity on o with w = 0.5, 2 (dashed and solid curves, respectively). As can be seen from Fig, 4, the pulsa-
tions of small (large) particles are reinforced (weakened) with an increase in their relative concentration, the
more appreciably the higher the total volumetric concentration of the disperse phase.
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Analogously, we can obtain expressions also for the other characteristics of pseudoturbulent motion;
in the general case, these have a very cumbersome form. The representations for the mean squares of the
longitudinal and transverse velocities of the gas have the simplest form

,2 2(1—pjp,) [®(3-+2nD ,
b = e S i+ 5 4 ¥R o 1 4238) + 30+ et

£+ 4N 1
@Y + =3 { Py + (1 + =) u2J‘ 3.3)

D
o _ ooz p(l—plpy) [ H(1H48D)
<U2/—<U >_15(1—:—H)82 1_:_2(1)

T 2.

and for the additional pulsation flow of the gas

o ¥p2(1—plpy) c o g (l—plpg)u
<91171/ T T30 Ewe u, <P‘_’7/1/ = W— (3-4)

The character of the dependence of these quantities on the parameters of the bed can be brought out on
the basis of relationships (3.3), (3.4}, and the curves in Fig. 1.

As follows from the above analysis, the relationships between the particle sizes of both fractions and
their contents in the disperse phase has a very considerable effect on the intensity and the properties of the
pseudoturbulent pulsations; the character of this effect depends on the values of the other parameters of the
bed. A change in the level of the development of the pseudoturbulence leads to corresponding changes in the
character and the intensity of the mixing of the phases in a fluidized bed and, in the final analysis, has an ef-
fect on the effectiveness of the use of the bed in the organization of heat- and mass-transfer processes in in-
dustrial chemical reactors and other apparatuses; this must be taken into consideration in calculation and
design of this equipment. In this respect, the conclusion of the existence of a weakening of the pulsations and
a lowering of the effectiveness of the mixing with the addition of a small (by volume) amount of small parti-
cles to the original monodisperse bed is of great importance. The conclusion has been confirmed experi-
mentally by known experiments on the dependence of the viscosity of fluidized systems on the composition of
their disperse phase (see, for example, [1, 7, 12]), in accordance with which comparatively small additions of
fines considerably lower the viscosity. The other properties of the model, presented above, related to the de-
pendences of the mean-square velocities of the pulsations and the coefficients of the pseudoturbulent diffusion
of the particles on ® and @, are, on the whole, confirmed by certain observations with beds used in catalytic
cracking processes. However, the present state of experimental investigations of binary and other polydis-
perse fluidized beds does not permit any kind of detailed comparison between theoretical conclusions and ex-
perimental data.

The latter is rendered difficult to a considerable degree also as a result of the complexity and cumber-
someness of the theory itself, which is extremely unsuitable for use for practical purposes. Therefore, there
is a need for the creation of a simplified theoretical model and engineering variants of the analysis of binary
beds. In view of this, calculated data of the type given above are found useful both for clarifying the most sig-
nificant factors, determining the behavior of a polydisperse bed under these or other conditions, and in verify-
ing the conclusions following from such simplified schemes.
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